ВауФакт

Сегодня многим кажется, что наука не развивается так быстро, как в 20-м столетии, однако во многих областях наблюдается такое явление, что дальнейшие шаги возможны лишь путем реализации крайне дорогих проектов. Естественно, не всегда деньги определяют важность открытия - может быть кто-то сможет совершить научную революцию и со ста долларами в кармане.

Однако гигантские вложения в те или иные научные проекты свидетельствуют о том, что государствами и учеными по-прежнему ставятся важные задачи, стоящие таких затрат. Сегодня проектов с бюджетом свыше миллиарда долларов так много, что трудно выделить явного лидера, поэтому рассмотрим тринадцать самых крупных из них.

МКС (Международная Космическая Станция)

Этот объект расположен на орбите Земли, на расстоянии 330-350 км от поверхности. Общая стоимость вложенных в МКС средств превысила 100 миллиардов долларов. Первый модуль станции был запущен в 1998 году, с тех пор ведется ее непрерывное строительство. Именно МКС является самым дорогим научным проектом в истории человечества. Впрочем, многие подвергают сомнение научность этой базы космических исследований. Также это самый большой космический предмет, созданный человеком. Можно упомянуть, что это единственное известное место во Вселенной (кроме Земли), где имеется душ, туалет и даже интернет. Вообще же станция обладает россыпью рекордов, а вот с научными достижениями дела обстоят похуже. Здесь действительно выращивают кристаллы, проводят опыты с пауками и ящерицами. Только вот ощутимых прорывов для земной науки ни в биологии, ни в физике осуществлено не было. По крайней мере, об этом широкой публике неизвестно. Многочисленные скептики, к примеру, патриарх-теоретик физики Фриман Дайсон, считают, что МКС - просто большая игрушка человечества. Впрочем, можно считать этот проект подготовкой к новым космическим задачам. Ведь сам процесс сборки гигантских орбитальных модулей уже сам по себе интересен программистам и инженерам. Другим примером использования тонких технологий является стыковка. Учеными также изучаются следы микрометеоритов на обшивке - это давало возможность изучать поведение материалов при столкновении с предметами на скоростях, недостижимых для земных условий. Главным же предметом исследований по-прежнему остаются люди. Врачи постоянно следят за тем, как отсутствие силы тяжести влияет, к примеру, на состав костей космонавтов, на реакцию организма на излучения космоса. Эти данные наверняка пригодятся при строительстве будущих баз на других планетах или спутниках.

Международный экспериментальный термоядерный реактор (ITER)

Международный экспериментальный термоядерный реактор (ITER)

Этот реактор должен вырабатывать энергию за счет объединений легких атомных ядер в более тяжелые. Находится установка во Франции, недалеко от Лазурного берега, в нее будет вложено от 12 до 15 миллиардов долларов. По замыслу создателей с помощью нее можно будет безопасно получать энергию в больших количествах. Строительство реактора началось в 2006 году, а будет закончено в 2016. После окончания стройки здесь будет проведен ряд экспериментов. Только в случае их удачного завершения в 2020-2030 годах начнется проектирование термоядерных реакторов для коммерческого пользования, которые будут полноценно работать лишь к неблизкому пока 2060 году. Сама идея термоядерного синтеза возникла еще в середине 20 века, тогда это представлялось уникальным источником энергии. Ученые предлагали использовать реакции, схожие с теми, которые происходят в глубинах Солнца - атомы изотопов водорода должны сливаться в атом гелия с выделением большого числа энергии. Топливо для термоядерных реакций калорийнее нефти в миллионы раз. Сырье же можно получать из обычной воды, а риска техногенной катастрофы, наподобие Чернобыльской, нет вовсе. В реальности осуществлению этого проекта мешает множество факторов, как финансово-политических, так и чисто технических. Лишь в 2006 году мировые лидеры смогли договориться о постройке экспериментальной установки. 4/11 от суммы выделил Евросоюз, Япония 2/11, а оставшуюся часть поровну поделили Индия, Китай, США, Россия и Корея.

Большой адронный коллайдер

Большой адронный коллайдер

В этом ускорителе сталкиваются тяжелые ионы со встречными пучками протонов. Расположена установка на границе Франции и Швейцарии. Стоимость работ по возведению коллайдера составила около 10 миллиардов долларов. Смыслом проекта является осознание природы вещества, времени и Вселенной в целом. Строительство было начато в 2001 году, а законченно полностью в 2008. Сегодня это самая крупная и дорогая экспериментальная в мире установка, длина ее кольца превышает 26 километров. Кроме того, коллайдер обсуждается не только учеными, но и широкой публикой. Многие люди пугались вообще запуска установки, считая, что это может повлечь за собой конец света. Неудивительно, что шутники посвятили факту запуска установки множество шуток и анекдотов.

Космический телескоп "Джеймс Уэбб"

Космический телескоп "Джеймс Уэбб"

Эта инфракрасная обсерватория, будет расположена в космосе в лагранжевой точке L2 на расстоянии 1 миллиона километров от Земли. Запуск проекта стоимостью 4,5 миллиарда долларов запланирован на 2013 - 2014 годы. Телескоп поможет составить жизнеописания звезд, галактик и землеподобных планет. В настоящее время главным телескопом считается "Хаббл", его-то и сменит "Джеймс Уэбб" на этом посту. Надо отметить, что у них мало общего, с затоплением "Хаббла" скорее всего, закончится эра оптических телескопов. "Уэбб" будет смотреть на Вселенную уже в инфракрасном диапазоне, как и приборы ночного видения. Чем это лучше? Дело в том, что существует эффект красного смещения, открытый астрономом Хаблом. Суть его в том, что с удалением объекта от Земли и ускорением его движения прочь от нас, спектр сдвигается в красную область. В результате звезды, расположенные в миллиардах световых годах от нас, глаз уже не видит, зато прибор ночного видения прекрасно их различает. Да и планеты - потенциальные двойники Земли отличаются именно инфракрасным свечением, так свет отражается от атмосферы обратно в космос. "Уэбб" будет и намного сложнее и массивнее "Хаббла". Главной деталью нового телескопа будет являться 6,5 метровое зеркало из бериллия, покрытого слоем золота. Для сравнения, зеркало Хаббла было "всего" 2,5 метра в диаметре. Только вот в случае поломки "Уеббу" едва ли кто-то извне поможет, тогда как "Хаббл" периодически чинится астронавтами. У "Джеймса Уэбба" есть и более дешевый собрат - это телескоп "Гершель", чья суммарная стоимость с обсерваторией "Планк" превысила 2,5 миллиарда долларов. Эта установка уже находится в космосе с 2009 года, целью является также изучение именно инфракрасного спектра.

Национальная зажигательная установка (NIF)

Национальная зажигательная установка (NIF)

Этот лазерный термоядерный реактор расположен в Калифорнии, а его стоимость составляет почти 4 миллиарда долларов. Его строительство было завершено в 2009 году. Это место должно будет стать самым светлым местом на планете. В одну точку нацелены 192 сверхмощных лазера, в течение сверхкороткой вспышки, за миллиардные доли секунды, будет создана вспышка света в 500 тераватт, что соответствует свету от 5 триллионов лампочек. Это должно будет спровоцировать термоядерную реакцию внутри золотого "наперстка" с тритием и дейтерием, который имеет объем размером с горошину. В перспективе такая реакция может стать самым дешевым источником энергии. Установка естественно носит экспериментальный характер, вокруг центрального "наперстка" выросло сооружение по форме и размерам напоминающее "Лужники". Эта установка является конкурентом французского ITER, хотя задачи у них и одинаковые, но абсолютно разные средства. Конструкции для термоядерных реакций были придуманы уже давно, установки меньших масштабов уже есть во всем мире, а вот NIF не имеет аналогов и прямых предшественников.

Протеом человека

Протеом человека

В ходе этого проекта ставится цель составить список всех белков человека. Проект не имеет территориальной привязки, он проводится одновременно в сотнях лабораторий по всему свету, суммарная стоимость работ более миллиарда долларов. Планируется, что эти исследования помогут разработать принципиально новые средства для диагностики заболеваний и их лечения. Проект возник на слуху еще в начале 21 века, хотя белки научились определять еще столетие назад. Вся жизнь человека основывается именно на белках, одни из которых позволяют нам двигаться, другие - определят настроение, а третьи участвуют в пищеварении. В середине 90-х годов прошлого века австралийцем Марком Уилкинсом был введен термин "протеом", который образовался путем слияния слов "протеин" (который в переводе с английского и обозначает белок) и "генома" (т.е. совокупности генов). Для прочтения протеом гораздо сложнее, нежели геном. Это связано с тем, что, во-первых, последовательность ДНК относительно стабильна, а вот белковый состав организма меняется ежесекундно. К тому же недостаточно понять какие аминокислоты образуют белок, надо еще и разобраться с его функциями. Знания в этой области могут создать абсолютно новую медицину, которая сможет максимально быстро диагностировать любое заболевание и успешно его лечить. Существует международная организация - Организация протеома человека (Human Proteome Organization (HUPO), которая и пытается скоординировать работу международных научных групп над решением проблемы. Особое внимание уделяется белкам головного мозга, печени и крови.

Ускоритель для исследования антипротонов и ионов

Ускоритель для исследования антипротонов и ионов

Этот крайне мощный ускоритель элементарных частиц расположен в Дармштадте, Германия. Его стоимость составляет 1,7 миллиарда долларов. С помощью установки, чей запуск планируется в 2015 году, ученые смогут моделировать ранние состояния Вселенной, это даст им возможность лучше понять устройство протонов и атомов, устройство ядра. Задачи в целом у ускорителя схожи с Большим адронным коллайдером. К примеру, задачей ученых является воссоздание той субстанции, которая образовалась в первые мгновения после Большого взрыва. Другой задачей является изучение сильного взаимодействия, ведь именно оно держит мир изнутри, не давая распасться ядрам атомов на частицы, а тем, в свою очередь, на кварки.

Научная лаборатория на Марсе (MSL)

Научная лаборатория на Марсе (MSL)

Марсоход представляет собой автономную химическую лабораторию в несколько раз больше и тяжелее предыдущих марсоходов «Спирит» и «Оппортьюнити». Аппарат должен будет за несколько месяцев пройти от 5 до 20 километров и провести полноценный анализ марсианских почв и компонентов атмосферы. Для выполнения контролируемой и более точной посадки использовались вспомогательные ракетные двигатели. Запуск «Кьюриосити» к Марсу состоялся 26 ноября 2011 года, мягкая посадка на поверхность Марса - 6 августа 2012 года. MSL - часть долговременной программы НАСА по исследованию Марса роботизированными зондами Mars Exploration Program. В проекте помимо НАСА участвуют также Калифорнийский технологический институт и Лаборатория реактивного движения. Руководитель проекта - Дуг Маккистион (Doug McCuistion), сотрудник НАСА из отдела изучения других планет. Полная стоимость проекта MSL составляет примерно 2,5 миллиарда долларов.

Рентгеновский лазер на свободных электронах

Рентгеновский лазер на свободных электронах

В 2009 году под Гамбургом (Германия) началось строительство Европейского рентгеновского лазера на свободных электронах, который предполагается, что будет самым крупным в мире рентгеновским лазером. В этом проекте участвуют Германия, Франция и Россия. Стоимость проекта превышает 1 млрд евро. С помощью установки станет возможным лучше анализировать органические молекулы, а также наноматериалы. По внешним формальным признакам лазер будет напоминать адронный коллайдер. Это тоже дорогая подземная закольцованная установка. Естественно, установка обладает иными задачами - она должна помочь увидеть молекулярные и атомарные процессы с помощью коротких (менее триллионной доли секунды) лазерные вспышек. Доля России в этом проекте составляет почти четверть. Деньги выделяются корпорацией "Роснано".

Перепись населения океана

Перепись населения океана

Перепись населения океана - международный биологический, океанологический, картографический, экологический проект, проводившийся с 2000 года до начала октября 2010 года в водах Мирового океана. Стоимость работ составляет около 1 миллиарда долларов. За десять лет работы, в которой приняли участие более 2700 исследователей из 80 стран, было проведено более 500 экспедиций, составлен набор карт, опубликованы три книги и более 2600 научных статей. Была создана Единая база данных по морским обитателям (Ocean Biogeographic Information System), в которую вошло более 28 миллионов наблюдений, в которой описываются более 120 000 видов океанских живых существ.

Многоантенный радиотелескоп (SKR)

Многоантенный радиотелескоп (SKR)

Эта установка представляет собой антенную решетку с площадью в квадратный километр. Расположить ее планируют либо в Южной Африке, либо в Австралии. Протяженность сети составит 3 тысячи километров, а стоимость всех работ - 2 миллиарда долларов. С помощью радиотелескопа исследователи планируют получить больше информации об истории космоса. Несмотря на плановое завершение работ в 2016 году, первых результатов ждать ранее 2020 года ждать не стоит. SKA способен уловить гипотетические радиопереговоры на Луне, но самый чувствительный в мире радиоприемник будет слушать сигналы исключительно нечеловеческого происхождения - космические радиоволны. Радиоастрономию можно сравнить со зрением лягушки, которая видит только то, что движется. Если в космосе звезда подает мощные радиоимпульсы - значит с ней происходит что-то интересное. По сравнению с оптическими устройствами радиотелескопы обладают преимуществом - ведь радиосигнал легко проходит сквозь стены, в космосе же преград нет вовсе - одна пыль и газ на сотни миллионов световых лет вокруг. В результате радиотелескопы легко прослушивают большие расстояния. Однако такая чуткость требует и соответствующих размеров. Комплекс SKA состоит из 5 тысяч антенн 12-метрового диаметра. Неприятностью является тот факт, что комплекс стоится в Южном полушарии, стало быть, большая часть северного неба останется для него недоступным.

Комплексная программа океанского бурения

Комплексная программа океанского бурения

Целью программы стоимостью полтора миллиарда является бурение глубоких скважин на специально выбранных участках дна Тихого и Атлантического океанов. Это позволит ученым лучше понять тектонику плит, предсказывать землетрясения, а также провести реконструкцию геологической истории планеты. Этот проект является одним из самых масштабных среди всех, посвященных изучению недр Земли. Неудивительно, ведь внутренности нашей планеты остаются большой загадкой. Грунт Луны можно пощупать в лаборатории, хотя его везли за 300 тысяч километров. Земные же глубины изучают во многом благодаря косвенной информации. Главными инициаторами проекта были Япония и США. Позже к их числу присоединились и другие страны. Проект ставит цель добраться до земной мантии или хотя бы до слоя Мохоровича, который находится между корой и мантией. В основе программы - несколько кораблей, специально оборудованных для этого. Установка на самом известном из них, Chikyu, может пробурить океанское дно на глубину более 7 километров. Однако, для открытий не потребовалось достигать и таких глубин - уже есть информация об обнаружении бактерии на глубине в 1626 метров под дном океана.

Телескоп Хаббл

Телескоп Хаббл

Конечно же, я не мог пройти мимо данного проекта. Телескоп Хаббл - один из немногих, кто дал нам взглянуть в самые глубокие точки космоса. Телескоп назван в честь Эдвина Хаббла - астронома, который основательно изменил понимание Вселенной. Стоимость данной автоматической обсерватории составляет 2,5 миллиарда долларов. Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна; в первую очередь - в инфракрасном диапазоне. Благодаря отсутствию влияния атмосферы разрешающая способность телескопа в 7-10 раз больше, чем у аналогичного телескопа, расположенного на Земле. Предполагается, что телескоп проработает до конца 2014 года, после чего будет заменен на более новейший телескоп Вебба.